Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels.
نویسندگان
چکیده
We propose a quantitative approach to probe the spatial heterogeneities of interactions in macromolecular gels, based on a combination of small angle X-ray (SAXS) and neutrons (SANS) scattering. We investigate the structure of model gluten protein gels and show that the gels display radically different SAXS and SANS profiles when the solvent is (at least partially) deuterated. The detailed analysis of the SANS signal as a function of the solvent deuteration demonstrates heterogeneities of sample deuteration at different length scales. The progressive exchange between the protons (H) of the proteins and the deuteriums (D) of the solvent is inhomogeneous and 60 nm large zones that are enriched in H are evidenced. In addition, at low protein concentration, in the sol state, solvent deuteration induces a liquid/liquid phase separation. Complementary biochemical and structure analyses show that the denser protein phase is more protonated and specifically enriched in glutenin, the polymeric fraction of gluten proteins. These findings suggest that the presence of H-rich zones in gluten gels would arise from the preferential interaction of glutenin polymers through a tight network of non-exchangeable intermolecular hydrogen bonds.
منابع مشابه
Small-angle neutron scattering on polymer gels: phase behavior, inhomogeneities and deformation mechanisms
Recent developments in small-angle neutron scattering (SANS) investigations on polymer gels are reviewed by encompassing (i) volume phase transition and microphase separation, (ii) inhomogeneities in polymer gels, (iii) pressure dependence of hydrophobic interaction and (iv) structural characterization of super-tough gels. These developments owe much to the understanding of gel inhomogeneities ...
متن کاملSwelling and cross-linking density effects on the structure of partially ionized gels
We report on small angle neutron scattering experiments performed on weakly ionized gels at various cross-link densities or swelling ratios and on the corresponding solutions. The excess of scattering intensity observed in the gels compared to the equivalent solutions is attributed to frozen fluctuations of concentration associated with more densely cross-linked regions. The variation of the ex...
متن کاملProtein structure and hydration probed by SANS and osmotic stress.
Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of...
متن کاملA Combined Small-Angle X-ray and Neutron Scattering Study of the Structure of Purified Soluble Gastrointestinal Mucins
The structures of purified soluble porcine gastric (Muc5ac) and duodenal (Muc2) mucin solutions at neutral and acidic pH were examined using small-angle X-ray scattering and small-angle neutron scattering experiments. We provide evidence for the morphology of the network above the semidilute overlap concentration and above the entanglement concentration. Furthermore, we investigated the gelatio...
متن کاملEffect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.
We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 24 شماره
صفحات -
تاریخ انتشار 2016